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The general problem of the temperature distribufion in a flat dielectric mirror during absorp-
tion of electromagnetic (EM) waves emitted by a laser in a broad spectrum range is solved.

A flat dielectric mirror (substrate with deposited film) absorbs EM waves, hence the rate of heat ab-
sorption q*(x, y) on the mirror surface is assumed known. According to [1], the mean quantity of heat ab-
sorbed per unit time per unit surface of the mirror is determined for plane EM waves by the relationship

gt (@, 1) = %« [a” (@) EE* + 1" () HH*].

If the radiation spectrum is realized in a broad frequency range (liquid lasers), then the total quantity of heat
being absorbed per unit time per unit mirror surface is determined by the formula

o
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where f(w) is the spectral distribution function and f (w)q+(w, r) is the spectral density of energy dissipation,
The heat emission of a mirror is determined in a Newton approximation by the equation
9~ (@) =T (r) — Ty}.

Under given boundary conditions in the stationary mode of laser operation, the temperature field of the
mirror must be determined which satisfies the equation

®AT + g = 0. 1)

Integrating (1) along the z coordinate over the mirror thickness, we obtain
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Taking into account that h « d, we obtain from (2)
=3 2&. — -
#AT (x, y) — T y)—Td+q =0, (3)
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where *(x, y) = 1/d Sq+(r)dz.

Q
Let us introduce the dimensionless variables

36—= kx, !;:ky, F: ]/;2—}-322121’ xz—l—-yz: kr,
where K = 20/nd, Equation (3) becomes in the variables X, y
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where
0(x, y) = O (kx, by) = T (x, y) — Ty = v (x, 3);
-~ d —
g (%, y) = q* (kx, ky) = — q* (v, 1)
20
The general solution of (4) can be written in the form

0@ 5 =[{¢ .16 &, 7. % pdvdy,
(x"y°)

where G is Green's function,

Let the substrate be unbounded. Then Green's function is determined by the equation

Gt 6 — 0 = 00, ©)

where ¢ = \/(:? -x2 + §F — yN?, and by the corresponding boundary conditions.
The general solution of (5) will be
G =TCily () + CK, (),

where I is the cylinder function of zero order and imaginary argument, and K, is the zero-order MacDonald
function [2]:

- (5)"
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C is the Euler constant equal to —¢ (1) = 0,57721566490... Because of the very rapid convergence of the series
(6) and (7), a sufficiently good approximation for practice is already obtained for substrate dimensions com-
mensurate with the mirror dimensions. Hence, we limit ourselves to the limit case of an infinite substrate.
For £ —  Ij(f) — =, hence C; = 0, Therefore,

GE) =GK @)

We determine the arbitrary constant C, from the condition of compliance with the heat balance

o (e @t = - (@) 6=
0 0

from which
= (2n [ EK, @ ) .
0

Introducing the new constant

a = (TKo @ dt — 1,8695...,

0

we obtain Green's function

GE - (Ei‘a’) Ko ©- @®)
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The general solution of the problem is represented in terms of Green's function as
T 1 r TN ol g
eu,w=:(———)f§Kﬂ@q+u.ynudy-
2na
(x".y")
Going over to the x, y coordinates, we obtain

1
2nna

T(X, y) = ( ) \g\g' gt (", y) K,y (klr — ') dx'dy’.
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The asymptotic behavior of Green's function K(§) is determined [2] by the formula
K, (kir—r1' ef;‘/—wi-—ex —kir—r). 9)
s(klr—r') rmenke Lalland)

It follows from (9) that the characteristic dimension' D outside of which there is practically no temperature
field is determined from the inequality
1 wd
D=ir—r|>—= —_
r—r'|> P ou
The condition upon compliance with which the mirror can be considered as approximately unbounded is ex-
pressed by the inequality

b
r=Dp,

Qt = jvgq‘L (x, y) dxdy >

wd2nr —di—
dr

from which we obtain after appropriate calculations and estimates

D, dwk? ‘/ T
kD

For the values Dp, %, @, d existing for mirrors, inequality (10) is satisfied. Therefore, Green's function (8)
can be used to compute the temperature field, The results of a computation agree with experiment,

exp (— kD)) € 20a. (10)

n

NOTATION
qt, q~ are the rates of absorption and heat transmission per unit mirror surface;
X, ¥ are the coordinates of points of the mirror;
w is the spectral frequency of laser radiation;
r, r are the arbitrary radius-vectors of points of the mirror surface;
AT are the imaginary parts of the complex dielectric and magnetic permittivities;
E, H, E*, B* are the vectors of the EM field intensity and their conjugate vectors;
o is the heat-transfer from the mirror to the external medium referred to unit surface per
unit time;
T is the average temperature over the mirror thickness;
Ty is the temperature of the external medium;
" is the three-dimensional Laplace operator;
d is the substrate thickness;
Cy and G, are the arbitrary constants;
D, is the mirror diameters;
6§ is the Dirac function.
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