TEMPERATURE FIELD IN A DIELECTRIC MIRROR DURING INTERACTION WITH LASER RADIATION

A. Ya. Balagurov, G. I. Labudin, and V. I. Skobelkin

UDC 536.24

The general problem of the temperature distribution in a flat dielectric mirror during absorption of electromagnetic (EM) waves emitted by a laser in a broad spectrum range is solved.

A flat dielectric mirror (substrate with deposited film) absorbs EM waves, hence the rate of heat absorption $q^+(x, y)$ on the mirror surface is assumed known. According to [1], the mean quantity of heat absorbed per unit time per unit surface of the mirror is determined for plane EM waves by the relationship

$$q^{+}\left(\omega,\mathbf{r}\right)=rac{\omega}{8\pi}\left[\left.\epsilon^{\prime\prime}\left(\omega
ight)\mathbf{EE^{*}}+\mu^{\prime\prime}\left(\omega
ight)\mathbf{HH^{*}}\right.
ight].$$

If the radiation spectrum is realized in a broad frequency range (liquid lasers), then the total quantity of heat being absorbed per unit time per unit mirror surface is determined by the formula

$$q^{+}(\mathbf{r}) = \int_{0}^{\infty} f(\omega) q^{+}(\omega, \mathbf{r}) d\omega,$$

where $f(\omega)$ is the spectral distribution function and $f(\omega)q^+(\omega, r)$ is the spectral density of energy dissipation.

The heat emission of a mirror is determined in a Newton approximation by the equation

$$q^-(\mathbf{r}) = \alpha [\overline{T}(\mathbf{r}) - T_0].$$

Under given boundary conditions in the stationary mode of laser operation, the temperature field of the mirror must be determined which satisfies the equation

$$\varkappa \Delta T + q^+ = 0. \tag{1}$$

Integrating (1) along the z coordinate over the mirror thickness, we obtain

$$\varkappa \int_{0}^{d+h} \Delta T dz + \int_{0}^{d+h} q^{+} dz = \varkappa (d+h) \left(\frac{\partial^{2} \overline{T}}{\partial x^{2}} + \frac{\partial^{2} \overline{T}}{\partial y^{2}} \right) + \varkappa \int_{0}^{d+h} \frac{\partial^{2} T}{\partial z^{2}} dz + \int_{0}^{d+h} q^{+} dz = 0,$$
 (2)

where

$$\overline{T}(x,y) = \frac{1}{d+h} \int_{0}^{d+h} T(\mathbf{r}) dz; \ \varkappa \int_{0}^{d+h} \frac{\partial^{2} T}{\partial z^{2}} \ dz = \varkappa \left. \frac{\partial T}{\partial z} \right|_{0}^{d+h} = -2\alpha \left(\overline{T} - T_{0} \right).$$

Taking into account that $h \ll d$, we obtain from (2)

$$\kappa \Delta \overline{T}(x, y) - \frac{2\alpha}{d} \left[\overline{T}(x, y) - T_0 \right] + \overline{q}^{\dagger} = 0, \tag{3}$$

where $\overline{q}^*(x, y) = 1/d \int_0^d q^+(r) dz$.

Let us introduce the dimensionless variables

$$\bar{x} = kx, \ \bar{y} = ky, \ \bar{r} = \sqrt{\bar{x}^2 + \bar{y}^2} = k\sqrt{x^2 + y^2} = kr$$

where $k^2 = 2\alpha/\kappa d$. Equation (3) becomes in the variables \overline{x} , y

$$\frac{\partial^2 \theta}{\partial \bar{x}^2} + \frac{\partial^2 \theta}{\partial \bar{y}^2} - \theta + q^+(\bar{x}, \bar{y}) = 0, \tag{4}$$

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 4, pp. 724-727, October, 1978. Original article submitted November 3, 1977.

where

$$\theta(\overline{x}, \overline{y}) = \theta(kx, ky) = \overline{T}(x, y) - T_0 = \tau(x, y);$$

$$q^+(\overline{x}, \overline{y}) = q^+(kx, ky) = \frac{d}{2\pi} \overline{q}^+(x, y).$$

The general solution of (4) can be written in the form

$$\theta(\overline{x}, \overline{y}) = \int_{(x',y')} \int_{\overline{q}^+} (\overline{x}', \overline{y}') G(\overline{x}', \overline{y}', \overline{x}, \overline{y}) d\overline{x}' d\overline{y}',$$

where G is Green's function.

Let the substrate be unbounded. Then Green's function is determined by the equation

$$\ddot{G}_{\xi\xi} + \frac{1}{\xi} \dot{G}_{\xi} - G(\xi) = -\delta(\xi), \tag{5}$$

where $\xi = \sqrt{(\overline{x} - x^{-1})^2 + (\overline{y} - \overline{y}^{-1})^2}$, and by the corresponding boundary conditions.

The general solution of (5) will be

$$G(\xi) = C_1 I_0(\xi) + C_2 K_0(\xi),$$

where I_0 is the cylinder function of zero order and imaginary argument, and K_0 is the zero-order MacDonald function [2]:

$$I_0(\xi) = \sum_{m=0}^{\infty} \frac{\left(\frac{\xi}{2}\right)^{2^m}}{(m!)^2},$$
 (6)

$$K_{0}(\xi) = -\left(\ln\frac{\xi}{2}\right) I_{0}(\xi) + \sum_{m=0}^{\infty} \frac{\xi^{2m}}{2^{2m} (m!)^{2}} \psi(m+1),$$

$$\psi(m+1) = -C + \sum_{i=1}^{m} \frac{1}{i},$$
(7)

C is the Euler constant equal to $-\psi$ (1) = 0.57721566490... Because of the very rapid convergence of the series (6) and (7), a sufficiently good approximation for practice is already obtained for substrate dimensions commensurate with the mirror dimensions. Hence, we limit ourselves to the limit case of an infinite substrate. For $\xi \to \infty$, hence $C_1 = 0$. Therefore,

$$G(\xi) = C_2 K_0(\xi)$$
.

We determine the arbitrary constant C2 from the condition of compliance with the heat balance

$$4\pi\alpha\int\limits_0^\infty \xi \tau\left(\xi\right)d\xi=\left(rac{4\pi\alpha}{k^2}\int\limits_0^\infty \xi K_0\left(\xi\right)d\xi\right)C_2=rac{2\alpha}{k^2}$$
,

from which

$$C_2 = \left(2\pi\int\limits_0^\infty \xi K_0\left(\xi\right)d\xi\right)^{-1}\,.$$

Introducing the new constant

$$a = \int_{0}^{\infty} \xi K_0(\xi) d\xi = 1,8695...,$$

we obtain Green's function

$$G(\xi) = \left(\frac{1}{2\pi a}\right) K_0(\xi). \tag{8}$$

The general solution of the problem is represented in terms of Green's function as

$$\theta(\overline{x}, \overline{y}) = \left(\frac{1}{2\pi a}\right) \int_{(x', y')} K_0(\xi) q^+(\overline{x}', \overline{y}') d\overline{x}' d\overline{y}'.$$

Going over to the x, y coordinates, we obtain

$$\tau(x, y) = \left(\frac{1}{2\pi\kappa a}\right) \int_{(x', y')} q^+(x', y') K_0(k|r-r'|) dx'dy'.$$

The asymptotic behavior of Green's function $K_0(\xi)$ is determined [2] by the formula

$$K_0(k|\mathbf{r}-\mathbf{r}'|) \cong \sqrt{\frac{\pi}{2k|\mathbf{r}-\mathbf{r}'|}} \exp\left(-k|\mathbf{r}-\mathbf{r}'|\right). \tag{9}$$

It follows from (9) that the characteristic dimension D outside of which there is practically no temperature field is determined from the inequality

$$D = |\mathbf{r} - \mathbf{r}'| \geqslant \frac{1}{k} = \sqrt{\frac{nd}{2\alpha}}.$$

The condition upon compliance with which the mirror can be considered as approximately unbounded is expressed by the inequality

$$Q^{+} = \iint q^{+}(x, y) dxdy \gg \left| ud2\pi r \frac{d\tau}{dr} \right|_{r=D_{\pi}},$$

from which we obtain after appropriate calculations and estimates

$$D_n d\kappa k^3 \sqrt{\frac{\pi}{2kD_n}} \exp(-kD_n) \ll 2\alpha a.$$
 (10)

For the values D_n , κ , α , d existing for mirrors, inequality (10) is satisfied. Therefore, Green's function (8) can be used to compute the temperature field. The results of a computation agree with experiment.

NOTATION

q ⁺ , q ⁻	are the rates of absorption and heat transmission per unit mirror surface;
x , y	are the coordinates of points of the mirror;
ω	is the spectral frequency of laser radiation;
r, r'	are the arbitrary radius-vectors of points of the mirror surface;
ε^{rr} , μ^{rr}	are the imaginary parts of the complex dielectric and magnetic permittivities;
E, H, E*, H*	are the vectors of the EM field intensity and their conjugate vectors;
α	is the heat-transfer from the mirror to the external medium referred to unit surface per unit time:
$\overline{ ilde{ extbf{T}}}$	is the average temperature over the mirror thickness;
T_0	is the temperature of the external medium;
и	is the three-dimensional Laplace operator;
d	is the substrate thickness;
C_1 and C_2	are the arbitrary constants;
$\mathbf{D_n}$	is the mirror diameters;
δ (ξ)	is the Dirac function.

LITERATURE CITED

- 1. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Gostekhizdat, Moscow (1957).
- 2. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill (1953).